- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gupta, Rajesh K. (1)
-
Hong, Dezhi (1)
-
Lazarow, Justin (1)
-
Lin, Jeng-Hau (1)
-
Tu, Zhuowen (1)
-
Yang, Yunfan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Emerging edge devices such as sensor nodes are increasingly being tasked with non-trivial tasks related to sensor data processing and even application-level inferences from this sensor data. These devices are, however, extraordinarily resource-constrained in terms of CPU power (often Cortex M0-3 class CPUs), available memory (in few KB to MBytes), and energy. Under these constraints, we explore a novel approach to character recognition using local binary pattern networks, or LBPNet, that can learn and perform bit-wise operations in an end-to-end fashion. LBPNet has its advantage for characters whose features are composed of structured strokes and distinctive outlines. LBPNet uses local binary comparisons and random projections in place of conventional convolution (or approximation of convolution) operations, providing an important means to improve memory efficiency as well as inference speed. We evaluate LBPNet on a number of character recognition benchmark datasets as well as several object classification datasets and demonstrate its effectiveness and efficiency.more » « less
An official website of the United States government
